蓝桥杯

暴力

dfs

bfs

回溯

动态规划

背包问题

数论

最大公约数

1
2
3
4
5
def gcd(a, b):
if b == 0:
reutrn a
a, b = b, a % b
return gcd(a, b)

中国剩余定理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def exgcd(a, b):
if b == 0:
return 1, 0
else:
x, y = exgcd(b, a % b)
return y, (x - a // b * y)

def CRT(k, a, r):
n = 1; ans = 0
for i in range(1, k + 1):
n = n * r[i]
for i in range(1, k + 1):
m = n // r[i]
b, y = exgcd(m, r[i]) # b * m mod r[i] = 1
while b < 0:
b += r[i]
ans = (ans + a[i] * m * b) % n
return (ans % n + n) % n

r = [0, 3, 5, 7]
a = [0, 2, 3, 2]
print(CRT(3, a, r))

筛法求素数

1
2
3
4
5
6
7
8
def isPrime(n):
prime = [True] * n
for i in range(2, n + 1):
if prime[i]:
for i in range(i * 2, n + 1, i):
prime[i] = False
return [i for i in range(2, n) if prime[i]]

图论

图论基础及遍历

构建图(邻接表)

1
2
3
4
5
6
7
8
9
def buildGraph(numCourses: int, prerequisites: List[List[int]]) -> List[List[int]]:
# 图中共有 numCourses 个节点
graph = [[] for _ in range(numCourses)]
for edge in prerequisites:
from_, to_ = edge[1], edge[0]
# 添加一条从 from 指向 to 的有向边
# 如果是无向图,则再反向添加一次
graph[from_].append(to_)
return graph

图的遍历

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 记录被遍历过的节点
visited = []
# 记录从起点到当前节点的路径
onPath = []

def traverse(graph, s):
if visited[s]:
return
# 经过节点 s,标记为已遍历
visited[s] = True
# 做选择:标记节点 s 在路径上
onPath[s] = True
for neighbor in graph.neighbors(s):
traverse(graph, neighbor)
# 撤销选择:节点 s 离开路径
onPath[s] = False

环检测及拓扑排序

环检测

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
graph = self.buildGraph(numCourses, prerequisites)
self.visited = [False] * numCourses
self.onPath = [False] * numCourses
self.hasCycle = False
for i in range(numCourses):
self.traverse(graph, i)
return not self.hasCycle

def traverse(self, graph, s):
if self.onPath[s]:
self.hasCycle = True
if self.visited[s] or self.hasCycle:
return
self.visited[s] = True
self.onPath[s] = True
for t in graph[s]:
self.traverse(graph, t)
self.onPath[s] = False

def buildGraph(self, numCourses, prerequisites):
# 代码见前文

拓扑排序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
def findOrder(numCourses: int, prerequisites: List[List[int]]) -> List[int]:
# 记录后序遍历结果
postorder = []
# 记录是否存在环
hasCycle = False
visited = [False] * numCourses
onPath = [False] * numCourses

# 建图函数
def buildGraph(numCourses, prerequisites):
# 代码见前文
pass

# 图遍历函数
def traverse(graph, s):
if onPath[s]:
# 发现环
hasCycle = True
if visited[s] or hasCycle:
return
# 前序遍历位置
onPath[s] = True
visited[s] = True
for t in graph[s]:
traverse(graph, t)
# 后序遍历位置
postorder.append(s)
onPath[s] = False

graph = buildGraph(numCourses, prerequisites)
# 遍历图
for i in range(numCourses):
traverse(graph, i)
# 有环图无法进行拓扑排序
if hasCycle[0]:
return []
# 逆后序遍历结果即为拓扑排序结果
return postorder[::-1]

二分图判定

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def __init__(self):
# 记录图是否符合二分图性质
self.ok = True
# 记录图中节点的颜色,False和True代表两种不同颜色
self.color = []
# 记录图中节点是否被访问过
self.visited = []

# 主函数,输入邻接表,判断是否是二分图
def isBipartite(self, graph: List[List[int]]) -> bool:
n = len(graph)
self.color = [False] * n
self.visited = [False] * n
# 因为图不一定是联通的,可能存在多个子图
# 所以要把每个节点都作为起点进行一次遍历
# 如果发现任何一个子图不是二分图,整幅图都不算二分图
for v in range(n):
if not self.visited[v]:
self.traverse(graph, v)
if not self.ok:
break
return self.ok

# DFS 遍历框架
def traverse(self, graph: List[List[int]], v: int) -> None:
# 如果已经确定不是二分图了,就不用浪费时间再递归遍历了
if not self.ok:
return

self.visited[v] = True
for w in graph[v]:
if not self.visited[w]:
# 相邻节点 w 没有被访问过
# 那么应该给节点 w 涂上和节点 v 不同的颜色
self.color[w] = not self.color[v]
# 继续遍历 w
self.traverse(graph, w)
else:
# 相邻节点 w 已经被访问过
# 根据 v 和 w 的颜色判断是否是二分图
if self.color[w] == self.color[v]:
# 若相同,则此图不是二分图
self.ok = False
return

Prim最小生成树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import heapq
class Prim:
# 核心数据结构,存储「横切边」的优先级队列
def __init__(self, graph: List[List[int]]):
self.graph = graph
self.pq = [] # PriorityQueue<int[]> 的实现
self.inMST = [False] * len(graph) # 类似 visited 数组的作用,记录哪些节点已经成为最小生成树的一部分
self.weightSum = 0 # 记录最小生成树的权重和

self.inMST[0] = True # 随便从一个点开始切分都可以,我们不妨从节点 0 开始
self.cut(0)

# 不断进行切分,向最小生成树中添加边
while self.pq:
# 按照边的权重从小到大排序
edge = heapq.heappop(self.pq)
to = edge[1] # 表示相邻节点
weight = edge[2] # 表示这条边的权重
if self.inMST[to]: # 节点 to 已经在最小生成树中,跳过。否则这条边会产生环
continue
self.weightSum += weight # 将边 edge 加入最小生成树
self.inMST[to] = True
self.cut(to) # 节点 to 加入后,进行新一轮切分,会产生更多横切边

# 将 s 的横切边加入优先队列
def cut(self, s):
for edge in self.graph[s]: # 遍历 s 的邻边
to = edge[1] # 相邻的节点
if self.inMST[to]: # 相邻接点 to 已经在最小生成树中,跳过
continue
heapq.heappush(self.pq, edge) # 加入横切边队列

# 最小生成树的权重和
def weightSum(self) -> int:
return self.weightSum

# 判断最小生成树是否包含图中的所有节点
def allConnected(self) -> bool:
for i in range(len(self.inMST)):
if not self.inMST[i]:
return False
return True

Dijstra最短路径

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import heapq
from typing import List
# 假设 graph 是一个邻接矩阵,graph[i][j] 是从节点 i 到节点 j 的距离
def dijkstra(start: int, graph: List[List[int]]) -> List[int]:
V = len(graph)
distTo = [float('inf')] * V
distTo[start] = 0
pq = [(0, start)] # 使用元组 (distance, node),以便按照 distance 进行排序
while pq:
(dist, curNodeID) = heapq.heappop(pq)
if dist > distTo[curNodeID]:
continue
for weight, nextNodeID in graph[curNodeID]:
if weight is not None: # 如果两个节点之间有边
distToNextNode = distTo[curNodeID] + weight
if distTo[nextNodeID] > distToNextNode:
distTo[nextNodeID] = distToNextNode
heapq.heappush(pq, (distToNextNode, nextNodeID))
return distTo